The use of physician domain knowledge to improve the learning of rule-based models for decision-support

نویسندگان

  • Richard Ambrosino
  • Bruce G. Buchanan
چکیده

This paper describes a study testing the hypothesis that the learning of a decision-support model by a computer learning algorithm from clinical data can be improved by the addition of domain knowledge from practicing physicians. The domain of the experiment is community-acquired pneumonia. The overall design of the study compares a computer learning algorithm given clinical data to one given clinical data plus domain knowledge added by physician subjects. This study showed that the performance of the computer-generated models augmented with knowledge added by physician subjects were significantly better than the computer-generated models generated without added knowledge using a two-stage rule induction algorithm in the domain of community-acquired pneumonia. This result was highly significant and shows that the addition of domain knowledge may be beneficial to the learning of clinical decision-support models, especially in domains where data is limited.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proposing an Appropriate Architecture for Decision Support Systems in the Field of Complex Chronic Care: Micro-Services Based Software Architecture in Kidney Transplant Care

Introduction: Development and successfully implementation of knowledge based clinical decision support system (KBCDSS) in kidney transplantation (KT) could support decision-making, reduce cost and improve quality of care. For practical use of these systems, however, many challenges have to be met.  Besides to well-recognized challenges of design and implementation of information systems in heal...

متن کامل

Proposing an Appropriate Architecture for Decision Support Systems in the Field of Complex Chronic Care: Micro-Services Based Software Architecture in Kidney Transplant Care

Introduction: Development and successfully implementation of knowledge based clinical decision support system (KBCDSS) in kidney transplantation (KT) could support decision-making, reduce cost and improve quality of care. For practical use of these systems, however, many challenges have to be met.  Besides to well-recognized challenges of design and implementation of information systems in heal...

متن کامل

Comparative Analysis of Machine Learning Algorithms with Optimization Purposes

The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches‎. ‎Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data‎. ‎In this paper‎, ‎a methodology has been employed to opt...

متن کامل

Application of Rough Set Theory in Data Mining for Decision Support Systems (DSSs)

Decision support systems (DSSs) are prevalent information systems for decision making in many competitive business environments. In a DSS, decision making process is intimately related to some factors which determine the quality of information systems and their related products. Traditional approaches to data analysis usually cannot be implemented in sophisticated Companies, where managers ne...

متن کامل

دسته‌بندی پرسش‌ها با استفاده از ترکیب دسته‌بندها

Question answering systems are produced and developed to provide exact answers to the question posted in natural language. One of the most important parts of question answering systems is question classification. The purpose of question classification is predicting the kind of answer needed for the question in natural language. The  literature works can be categorized as rule-based and learning...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings. AMIA Symposium

دوره   شماره 

صفحات  -

تاریخ انتشار 1999